3.210 \(\int \frac{(a+a \sec (c+d x)) (A+C \sec ^2(c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=135 \[ \frac{2 a (A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a C \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

[Out]

(2*a*(A - C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + 3*C)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2
*a*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.184622, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4075, 4047, 3771, 2641, 4046, 2639} \[ \frac{2 a (A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a C \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(A - C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + 3*C)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2
*a*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 4075

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_)), x_Symbol] :> Simp[(A*a*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*n), x] + Dist[1/(d*n), Int[(d*Csc[e +
f*x])^(n + 1)*Simp[A*b*n + a*(C*n + A*(n + 1))*Csc[e + f*x] + b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b,
 d, e, f, A, C}, x] && LtQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2}{3} \int \frac{-\frac{3 a A}{2}-\frac{1}{2} a (A+3 C) \sec (c+d x)-\frac{3}{2} a C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2}{3} \int \frac{-\frac{3 a A}{2}-\frac{3}{2} a C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} (a (A+3 C)) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a C \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+(a (A-C)) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (a (A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a C \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\left (a (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=\frac{2 a (A-C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 a C \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 1.35405, size = 169, normalized size = 1.25 \[ \frac{a e^{-i d x} \sqrt{\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (-2 i (A-C) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )+2 (A+3 C) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+A \sin (2 (c+d x))+6 i A \cos (c+d x)+6 C \sin (c+d x)-6 i C \cos (c+d x)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(a*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((6*I)*A*Cos[c + d*x] - (6*I)*C*Cos[c + d*x] + 2*(A + 3*C)*Sqrt[
Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (2*I)*(A - C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeo
metric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 6*C*Sin[c + d*x] + A*Sin[2*(c + d*x)]))/(3*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B]  time = 2.349, size = 458, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x)

[Out]

-2/3*a*(4*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+3*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+A*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)+3*C*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C a \sec \left (d x + c\right )^{3} + C a \sec \left (d x + c\right )^{2} + A a \sec \left (d x + c\right ) + A a}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*a*sec(d*x + c)^3 + C*a*sec(d*x + c)^2 + A*a*sec(d*x + c) + A*a)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{A}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{A}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int C \sqrt{\sec{\left (c + d x \right )}}\, dx + \int C \sec ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

a*(Integral(A/sec(c + d*x)**(3/2), x) + Integral(A/sqrt(sec(c + d*x)), x) + Integral(C*sqrt(sec(c + d*x)), x)
+ Integral(C*sec(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)